
Lecture 9 — Study of the Laplace operator ∆ = ∂2
1 + ... + ∂2

n

-This is the study of Harmonic functions :

∆u = 0 in Ω

- Poisson eq :
∆u = f in Ω

-Neumann bc :
∂vu = g on ∂Ω

-Robin bc :
ku+ ∂vu = g on ∂Ω

-Methods generalize to variable coefficients, higher order, elliptic linear and non-linear eq and systems.

Second Order Linear PDE

Consider L a 2nd differential operator

Lu =

n∑
i,j

aij(x)∂i∂ju A = (aij)− symmetric. (1)

The symmetry here is not imposed; once can always rewrite the PDE such that we have symmetry.
Eg

Lu = a11(x)∂2u+ a12(x)∂1∂2u+ a21(x)∂2∂1u︸ ︷︷ ︸
rewrite

+a22(x)∂2
2u (2)

→ (a12(x) + a21(x))∂1∂2u (3)

=⇒ a12(x) + a21(x)

2
∂1∂2u+

a12(x) + a21(x)

2
∂2∂1u (4)

to obtain symmetry. Suppose we want to introduce a change of coordinate from xRn 7→ yRn .
Let φ : Rn → Rn be a smooth mapping,

yi = φi(x). (5)

We take derivatives by chain and product rule

∂2u(φ)

∂xi∂xj
=

∂

∂xj

(
∂u

∂xi

)
(6)

=
∂

∂xj

(
∂u

∂yk

∂yk
∂xi

)
; yk = φk(x) (7)

=
∂2u

∂yk∂yl

∂φk
∂xi

∂φl
∂xj

+
∂u

∂yk

∂2φk
∂xi∂xj

(8)
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Highest orderer (principal) part becomes

Lpru =
∑
k,l

∂2u

∂yk∂yl

∑
i,j

aij(x)
∂φk
∂xi

φl
∂xj


︸ ︷︷ ︸

bkl(x)

(9)

Suppose aij(x) = aij , and φ(x) = Tx+ c, ∂iφk = Tki. Note that φ defines a linear transformation
and translation.

B = TAT t.

One can choose T s.t
B = diag(1, ..., 1︸ ︷︷ ︸

n+

,−1, ...,−1︸ ︷︷ ︸
n−

, 0, ..., 0)

where n+(respectively n−) is numbers of positive eigenvalues of A.

n+ = n or n− = n : elliptic.

n+ = n− 1, n− = 1 : hyperbolic.

n+ = n− 1, n− = 0 : parabolic

The same can be done for variable coefficients case at each pt x ∈ Ω.

Elliptic Case

Fig 9.1 if you want to simplify the eq. on an open set, then you have to solve,

aij(x)∂iφk∂jφl = δkl (10)

It can solved iff the Riemann-Christoffel tensor of A vanishes ie (A is flat) .

aij(x)∂iφk∂jφl = ψ(x)δkl for someψ.

Now obstruction in n = 2. For n ≥ 3, the obstruction is Cotton-Weyl tensor.

Structure of A

A constant, φlinear, TAT t = A generalized orthogonal transformation. (A):

for A = I : O(A) = O(n) = {T ∈ Rn×n : TT t = I}.

for A = diag(1, ...1,−1) : O(A) = O(n, 1)

DφADφt = ψA generalized conformal transformation. For A = I : n = 2 : very rich. For n ≥ 3
: only conformal transformations are combinations of translations, scaling, orthogonal and inversion.
(Liouville’s thm).
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Fundamental Sol of ∆

Laplace : ∆ϕ = 0 outside Ω. The solution for ϕ comes from the radial symmetry the Laplacian
operator has, therefore setting r = |x− y| and solving for v := ψ(r) in ∆v = 0

=⇒ ∆v = ψ′′(r) +
n− 1

r
ψ′(r) = 0 (11)

yielding

ψ(|x− y|) = ϕ(x) = C

∫
Ω

f(y)

|x− y|
dy.

Poisson (1813) : ∆ϕ = −4πCf

E(x) =

{
1

(2−n)Sn−1|x|n−1 n ≥ 3
ln|x|
2π n = 2

For F ∈ C1(Ω) ∩ C0(Ω),∫
Ω

Div F dx =

∫
∂Ω

Fν dS ν ∈ T⊥x (∂Ω) unit outwards. (Gauss Div Theorem 1813)

Green’s Identities (1828)

Let u, v ∈ C2(Ω)∩C0(Ω). Suppose F = ~5u then Div F = ∆u and Fν = ∂νu =
(
du
dn − Fritz notation

)
,

however Note that ∂νu signifies the directional derivative of u with respect to the exterior unit normal
to T (∂Ω) at x ∈ ∂Ω; explicitly we have Fν =

∑
i
∂u
∂xi

νi.
By the Gauss divergence theorem:∫

Ω

∆u︸︷︷︸
Div F

dx =

∫
∂Ω

Fν dS (Green Ø) (12)

Suppose now that F = u~5v. Then the Div F = ~5u · ~5v + u∆v and Fν = u∂νv, moreover∫
Ω

~5u · ~5v + u∆v︸ ︷︷ ︸
Div F

dx =

∫
∂Ω

Fν dS (Green I) (13)

∫
Ω

u∆v − v∆u dx =

∫
∂Ω

u∂νv − v∂νu dS (Green II) (14)

(where in the Fritz ~5u · ~5v was computed explicitly as
∑
i uxivxi =

∑
i ∂iu ∂iv.)

Applications

a) In Green Ø,

If ∆u = 0 =⇒
∫
∂Ω

∂νu = 0.

If ∂νu = 0 =⇒
∫

Ω

∆u = 0
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b) Uniqueness theorem — In Green I, put v = u with ∆u = 0 then the “energy identity”∫
Ω

|~5u|2 =

∫
∂Ω

u∂νu

If u = 0 or ∂νu = 0 on ∂Ω

=⇒
∫
|~5u|2 = 0 =⇒ u ≡ const in Ω, for u ∈ C2(Ω).

c) In (Green I), u = E Fig 9.2. Ωε = BR\Bε, supp v ⊂ BR∫
Ωε

E∆v =

∫
∂Ωε

E∂νv − v∂νE = −
∫
∂Bε

E∂rv +

∫
∂Bε

u∂rE

E
1

rn−2∫ ε rn−1

rn−2
=

∫ ε

rdr ε2

∂rR
1

rn−1
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